4.8 Article

Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1405820111

关键词

bacterial motility; cell reorientation; CheY; lateral flagella

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [TH 831/5-1, SO 421/12-1, SPP1617]
  2. Max Planck Society
  3. European Research Council [294761-MicRobE]

向作者/读者索取更多资源

As numerous bacterial species, Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system. A significant sub-population of CN-32 cells induces expression of the secondary system under planktonic conditions, resulting in formation of one, sometimes two, filaments at lateral positions in addition to the primary polar flagellum. Mutant analysis revealed that the single chemotaxis system primarily or even exclusively addresses the main polar flagellar system. Cells with secondary filaments outperformed their monopolarly flagellated counterparts in spreading on soft-agar plates and through medium-filled channels despite having lower swimming speed. While mutant cells with only polar flagella navigate by a run-reverse-flick mechanism resulting in effective cell realignments of about 90 degrees, wild-type cells with secondary filaments exhibited a range of realignment angles with an average value of smaller than 90 degrees. Mathematical modeling and computer simulations demonstrated that the smaller realignment angle of wild-type cells results in the higher directional persistence, increasing spreading efficiency both with and without a chemical gradient. Taken together, we propose that in S. putrefaciens CN-32, cell propulsion and directional switches are mainly mediated by the polar flagellar system, while the secondary filament increases the directional persistence of swimming and thus of spreading in the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据