4.8 Article

Physical basis of spindle self-organization

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1409404111

关键词

active matter; spindle assembly; microtubules and motors

资金

  1. Nation Science Foundation [PHY-0847188, DMR-0820484]
  2. Human Frontiers Science Program

向作者/读者索取更多资源

The cytoskeleton forms a variety of steady-state, subcellular structures that are maintained by continuous fluxes of molecules and energy. Understanding such self-organizing structures is not only crucial for cell biology but also poses a fundamental challenge for physics, since these systems are active materials that behave drastically differently from matter at or near equilibrium. Active liquid crystal theories have been developed to study the self-organization of cytoskeletal filaments in in vitro systems of purified components. However, it has been unclear how relevant these simplified approaches are for understanding biological structures, which can be composed of hundreds of distinct proteins. Here we show that a suitably constructed active liquid crystal theory produces remarkably accurate predictions of the behaviors of metaphase spindles-the cytoskeletal structure, composed largely of microtubules and associated proteins, that segregates chromosomes during cell division.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据