4.8 Article

Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1406508111

关键词

cardiac repair; macrophages; inflammation

资金

  1. NIH [T32 HL007081, K08 HL123519, R01 HL111094, R01 HL105732]
  2. Oliver Langenberg Physician-Scientist Training Program
  3. Washington University Center for the Investigation of Membrane Excitability Diseases Live Cell Imaging Facility

向作者/读者索取更多资源

The mechanistic basis for why inflammation is simultaneously both deleterious and essential for tissue repair is not fully understood. Recently, a new paradigm has emerged: Organs are replete with resident macrophages of embryonic origin distinct from monocyte-derived macrophages. This added complexity raises the question of whether distinct immune cells drive inflammatory and reparative activities after injury. Previous work has demonstrated that the neonatal heart has a remarkable capacity for tissue repair compared with the adult heart, offering an ideal context to examine these concepts. We hypothesized that unrecognized differences in macrophage composition is a key determinant of cardiac tissue repair. Using a genetic model of cardiomyocyte ablation, we demonstrated that neonatal mice expand a population of embryonic-derived resident cardiac macrophages, which generate minimal inflammation and promote cardiac recovery through cardiomyocyte proliferation and angiogenesis. During homeostasis, the adult heart contains embryonic-derived macrophages with similar properties. However, after injury, these cells were replaced by monocyte-derived macrophages that are proinflammatory and lacked reparative activities. Inhibition of monocyte recruitment to the adult heart preserved embryonic-derived macrophage subsets, reduced inflammation, and enhanced tissue repair. These findings indicate that embryonic-derived macrophages are key mediators of cardiac recovery and suggest that therapeutics targeting distinct macrophage lineages may serve as novel treatments for heart failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据