4.8 Article

The human placenta methylome

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1215145110

关键词

epigenomics; hypomethylation

资金

  1. National Institutes of Health (NIH) [R01HD041462, R01ES021707]
  2. Department of Defense Grant [AR110194]
  3. Canadian Institutes for Health Research Grant [FRN 119402]

向作者/读者索取更多资源

Tissue-specific DNA methylation is found at promoters, enhancers, and CpG islands but also over larger genomic regions. In most human tissues, the vast majority of the genome is highly methylated (>70%). Recently, sequencing of bisulfite-treated DNA (MethylC-seq) has revealed large partially methylated domains (PMDs) in some human cell lines. PMDs cover up to 40% of the genome and are associated with gene repression and inactive chromatin marks. However, to date, only cultured cells and cancers have shown evidence for PMDs. Here, we performed MethylC-seq in full-term human placenta and demonstrate it is the first known normal tissue showing clear evidence of PMDs. We found that PMDs cover 37% of the placental genome, are stable throughout gestation and between individuals, and can be observed with lower sensitivity in Illumina 450K Infinium data. RNA-seq analysis confirmed that genes in PMDs are repressed in placenta. Using a hidden Markov model to map placental PMDs genome-wide and compare them to PMDs in other cell lines, we found that genes within placental PMDs have tissue-specific functions. For regulatory regions, methylation levels in promoter CpG islands are actually higher for genes within placental PMDs, despite the lower overall methylation of surrounding regions. Similar to PMDs, polycomb-regulated regions are hypomethylated but smaller and distinct from PMDs, with some being hypermethylated in placenta compared with other tissues. These results suggest that PMDs are a developmentally dynamic feature of the methylome that are relevant for understanding both normal development and cancer and may be of use as epigenetic biomarkers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据