4.8 Article

Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1221400110

关键词

congenital contractures; neuromuscular system; whole exome sequencing; whole genome sequencing

资金

  1. Helse Vest
  2. National Institutes of Health (NIH) [R01HD060050, R01MH084676, R01DE022358]
  3. Brigham and Women's Hospital
  4. NIH/National Heart, Lung, and Blood Institute [HL114642]
  5. the Netherlands Organization for Health Research and Development [ZonMW 917-66-363]
  6. Medical Research Council Career Development Fellowship
  7. Medical Research Council [G1100340, G0901905] Funding Source: researchfish
  8. MRC [G1100340, G0901905] Funding Source: UKRI

向作者/读者索取更多资源

cMechanotransduction, the pathway by which mechanical forces are translated to biological signals, plays important but poorly characterized roles in physiology. PIEZOs are recently identified, widely expressed, mechanically activated ion channels that are hypothesized to play a role in mechanotransduction in mammals. Here, we describe two distinct PIEZO2 mutations in patients with a subtype of Distal Arthrogryposis Type 5 characterized by generalized autosomal dominant contractures with limited eye movements, restrictive lung disease, and variable absence of cruciate knee ligaments. Electrophysiological studies reveal that the two PIEZO2 mutations affect biophysical properties related to channel inactivation: both E2727del and I802F mutations cause the PIEZO2-dependent, mechanically activated currents to recover faster from inactivation, while E2727del also causes a slowing of inactivation. Both types of changes in kinetics result in increased channel activity in response to a given mechanical stimulus, suggesting that Distal Arthrogryposis Type 5 can be caused by gain-of-function mutations in PIEZO2. We further show that overexpression of mutated PIEZO2 cDNAs does not cause constitutive activity or toxicity to cells, indicating that the observed phenotype is likely due to a mechanotransduction defect. Our studies identify a type of channelopathy and link the dysfunction of mechanically activated ion channels to developmental malformations and joint contractures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据