4.8 Article

Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1221712110

关键词

heavy metal; MtnA; coactivator; RNA polymerase

资金

  1. NIGMS NIH HHS [T32 GM007122] Funding Source: Medline

向作者/读者索取更多资源

Transcription factor (TF)IID is a central player in activated transcription initiation. Recent evidence suggests that the role and composition of TFIID are more diverse than previously understood. To investigate the effects of changing the composition of TFIID in a simple system, we depleted TATA box-binding protein-associated factor (TAF) 1 from Drosophila cells and determined the consequences on metal-induced transcription at an inducible gene, metallothionein B. We observe a marked increase in the levels of both the mature message and pre-mRNA in TAF1-depleted cells. Under conditions of continued metal exposure, we show that TAF1 depletion increases the magnitude of the initial transcription burst but has no effect on the timing of that burst. We also show that TAF1 depletion causes delay in the shutoff of transcription upon removal of the stimulus. Thus, TAFs are involved in both establishing an upper limit of transcription during induction and efficiently turning the gene off once the inducer is removed. Using genome-wide nascent sequencing, we identify hundreds of genes that are controlled in a similar manner, indicating that the findings at this inducible gene are likely generalizable to a large set of promoters. There is a long-standing appreciation for the importance of the spatial and temporal control of transcription. Here we uncover an important third dimension of control: the magnitude of the response. Our results show that the magnitude of the transcriptional response to the same signaling event, even at the same promoter, can vary greatly depending on the composition of the TFIID complex in the cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据