4.8 Article

Cost of rNTP/dNTP pool imbalance at the replication fork

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1309506110

关键词

-

资金

  1. National Institutes of Health (NIH) [GM38831, MCB1050948]
  2. NIH Genetics Training Grant [T32GM007544]
  3. Direct For Biological Sciences [1050948] Funding Source: National Science Foundation
  4. Div Of Molecular and Cellular Bioscience [1050948] Funding Source: National Science Foundation

向作者/读者索取更多资源

The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing. The effect of rNTPs on Pol rate generalizes to B-family eukaryotic replicases, Pols delta and epsilon. Imbalance of the dNTP pool also slows the replisome and thus is not specific to rNTPs. We observe a measurable frequency of rNMP incorporation that predicts one rNTP incorporated every 2.3 kb during chromosome replication. Given the frequency of rNMP incorporation, the repair of rNMPs is likely rapid. RNase HII nicks DNA at single rNMP residues to initiate replacement with dNMP. Considering that rNMPs will mark the new strand, RNase HII may direct strand-specificity for mismatch repair (MMR). How the newly synthesized strand is recognized for MMR is uncertain in eukaryotes and most bacteria, which lack a methyl-directed nicking system. Here we demonstrate that Bacillus subtilis incorporates rNMPs in vivo, that RNase HII plays a role in their removal, and the RNase HII gene deletion enhances mutagenesis, suggesting a possible role of incorporated rNMPs in MMR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据