4.8 Article

Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1314561111

关键词

experimental evolution; epistatic network; genetic basis of adaptation

资金

  1. Defense Advanced Research Projects Agency [HR-001110-1-0052]
  2. National Institutes of Health [R00-GM087550]
  3. Welch Foundation [F-1654]
  4. Cancer Prevention Research Institute of Texas research traineeship

向作者/读者索取更多资源

Evolutionary innovations often arise from complex genetic and ecological interactions, which can make it challenging to understand retrospectively how a novel trait arose. In a long-term experiment, Escherichia coli gained the ability to use abundant citrate (Cit(+)) in the growth medium after similar to 31,500 generations of evolution. Exploiting this previously untapped resource was highly beneficial: later Cit(+) variants achieve a much higher population density in this environment. All Cit(+) individuals share a mutation that activates aerobic expression of the citT citrate transporter, but this mutation confers only an extremely weak Cit(+) phenotype on its own. To determine which of the other >70 mutations in early Cit(+) clones were needed to take full advantage of citrate, we developed a recursive genomewide recombination and sequencing method (REGRES) and performed genetic backcrosses to purge mutations not required for Cit(+) from an evolved strain. We discovered a mutation that increased expression of the dctA C-4-dicarboxylate transporter greatly enhanced the Cit(+) phenotype after it evolved. Surprisingly, strains containing just the citT and dctA mutations fully use citrate, indicating that earlier mutations thought to have potentiated the initial evolution of Cit+ are not required for expression of the refined version of this trait. Instead, this metabolic innovation may be contingent on a genetic background, and possibly ecological context, that enabled citT mutants to persist among competitors long enough to obtain dctA or equivalent mutations that conferred an overwhelming advantage. More generally, refinement of an emergent trait from a rudimentary form may be crucial to its evolutionary success.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据