4.8 Article

Pressure-induced superconductivity in CaC2

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1307384110

关键词

high pressure; metallization

资金

  1. National Natural Science Foundation of China [11047013]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions
  3. Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers and Presidents
  4. Swedish Research Council
  5. EFree, an Energy Frontier Research Center
  6. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001057]

向作者/读者索取更多资源

Carbon can exist as isolated dumbbell, 1D chain, 2D plane, and 3D network in carbon solids or carbon-based compounds, which attributes to its rich chemical binding way, including sp-, sp(2)-, and sp(3)-hybridized bonds. sp(2)-hybridizing carbon always captures special attention due to its unique physical and chemical property. Here, using an evolutionary algorithm in conjunction with ab initio method, we found that, under compression, dumbbell carbon in CaC2 can be polymerized first into 1D chain and then into ribbon and further into 2D graphite sheet at higher pressure. The C2/m structure transforms into an orthorhombic Cmcm phase at 0.5 GPa, followed by another orthorhombic Immm phase, which is stabilized in a wide pressure range of 15.2-105.8 GPa and then forced into MgB2-type phase with wide range stability up to at least 1 TPa. Strong electron-phonon coupling. in compressed CaC2 is found, in particular for Immm phase, which has the highest lambda value (0.562-0.564) among them, leading to its high superconducting critical temperature T-c (7.9 similar to 9.8 K), which is comparable with the 11.5 K value of CaC6. Our results show that calcium not only can stabilize carbon sp(2) hybridization at a larger range of pressure but also can contribute in superconducting behavior, which would further ignite experimental and theoretical interest in alkaline-earth metal carbides to uncover their peculiar physical properties under extreme conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据