4.8 Article

Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1221259110

关键词

-

资金

  1. IDEALG [ANR-10-BTBR-04-02, 04-04]
  2. Groupement d'Interet Scientifique Genomique Marine
  3. NERC [NE/J00460X/1]
  4. Network of Excellence Marine Genomics Europe [GOCE-CT-2004-505403]
  5. Conseil Regional de Bretagne
  6. Czech Science Foundation
  7. Scottish Association for Marine Science
  8. Seventh Framework Program Association of European Marine Biological Laboratories (ASSEMBLE)
  9. Marine Alliance for Science and Technology for Scotland (MASTS) Visiting Researcher Fellowship
  10. Natural Environment Research Council [NE/J00460X/1]
  11. Commissariat a l'Energie Atomique (CEA)
  12. Natural Environment Research Council [NE/J00460X/1] Funding Source: researchfish
  13. NERC [NE/J00460X/1] Funding Source: UKRI

向作者/读者索取更多资源

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e. g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据