4.8 Article

Evolution of modular intraflagellar transport from a coatomer-like progenitor

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1221011110

关键词

complex modularity; molecular evolution

资金

  1. European Community [241955]
  2. SYSCILIA
  3. Wellcome Trust [082813]
  4. National Institutes of Health/National Institute of General Medical Sciences [U54 RR022220]

向作者/读者索取更多资源

The intraflagellar transport (IFT) complex is an integral component of the cilium, a quintessential organelle of the eukaryotic cell. The IFT system consists of three subcomplexes [i.e., intraflagellar transport (IFT)-A, IFT-B, and the BBSome], which together transport proteins and other molecules along the cilium. IFT dysfunction results in diseases collectively called ciliopathies. It has been proposed that the IFT complexes originated from vesicle coats similar to coat protein complex (COP) I, COPII, and clathrin. Here we provide phylogenetic evidence for common ancestry of IFT subunits and alpha, beta', and epsilon subunits of COPI, and trace the origins of the IFT-A, IFT-B, and the BBSome subcomplexes. We find that IFT-A and the BBSome likely arose from an IFT-B-like complex by intracomplex subunit duplication. The distribution of IFT proteins across eukaryotes identifies the BBSome as a frequently lost, modular component of the IFT. Significantly, loss of the BBSome from a taxon is a frequent precursor to complete cilium loss in related taxa. Given the inferred late origin of the BBSome in cilium evolution and its frequent loss, the IFT complex behaves as a last-in, first-out system. The protocoatomer origin of the IFT complex corroborates involvement of IFT components in vesicle transport. Expansion of IFT subunits by duplication and their subsequent independent loss supports the idea of modularity and structural independence of the IFT subcomplexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据