4.8 Article

Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1310230110

关键词

eIF4EBP1; eIF4E; multiple myeloma; MLN0128

资金

  1. National Institutes of Health (NIH) [R01 CA154916, R01 CA140456]
  2. Waxman Foundation
  3. University of California San Francisco (UCSF)'s Stephen and Nancy Grand Multiple Myeloma Translational Initiative
  4. American Association for Cancer Research-Millennium Fellowship in Lymphoma Research
  5. UCSF Howard Hughes Medical Institute Graduate Education in Medical Sciences Fellowship

向作者/读者索取更多资源

Myc is one of the most commonly deregulated oncogenes in human cancer, yet therapies directly targeting Myc hyperactivation are not presently available in the clinic. The evolutionarily conserved function of Myc in modulating protein synthesis control is critical to the Myc oncogenic program. Indeed, enhancing the protein synthesis capacity of cancer cells directly contributes to their survival, proliferation, and genome instability. Therefore, inhibiting enhanced protein synthesis may represent a highly relevant strategy for the treatment of Myc-dependent human cancers. However, components of the translation machinery that can be exploited as therapeutic targets for Myc-driven cancers remain poorly defined. Here, we uncover a surprising and important functional link between Myc and mammalian target of rapamycin (mTOR)-dependent phosphorylation of eukaryotic translation initiation factor 4E binding protein-1 (4EBP1), a master regulator of protein synthesis control. Using a pharmacogenetic approach, we find that mTOR-dependent phosphorylation of 4EBP1 is required for cancer cell survival in Myc-dependent tumor initiation and maintenance. We further show that a clinical mTOR active site inhibitor, which is capable of blocking mTOR-dependent 4EBP1 phosphorylation, has remarkable therapeutic efficacy in Myc-driven hematological cancers. Additionally, we demonstrate the clinical implications of these results by delineating a significant link between Myc and mTOR-dependent phosphorylation of 4EBP1 and therapeutic response in human lymphomas. Together, these findings reveal that an important mTOR substrate is found hyperactivated down-stream of Myc oncogenic activity to promote tumor survival and confers synthetic lethality, thereby revealing a unique therapeutic approach to render Myc druggable in the clinic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据