4.8 Article

Oxygen tolerance of an in silico-designed bioinspired hydrogen-evolving catalyst in water

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1215149110

关键词

energy storage; renewable energy; density functional theory; Car-Parrinello molecular dynamics

资金

  1. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-06ER-46344]
  2. Office of Science of the US Department of Energy [DE-AC02-05CH11231]
  3. Division Of Mathematical Sciences
  4. Direct For Mathematical & Physical Scien [1040196] Funding Source: National Science Foundation

向作者/读者索取更多资源

Certain bacterial enzymes, the diiron hydrogenases, have turnover numbers for hydrogen production from water as large as 10(4)/s. Their much smaller common active site, composed of earth-abundant materials, has a structure that is an attractive starting point for the design of a practical catalyst for electrocatalytic or solar photocatalytic hydrogen production from water. In earlier work, our group has reported the computational design of [FeFe](P)/FeS2, a hydrogenase-inspired catalyst/electrode complex, which is efficient and stable throughout the production cycle. However, the diiron hydrogenases are highly sensitive to ambient oxygen by a mechanism not yet understood in detail. An issue critical for practical use of [FeFe](P)/FeS2 is whether this catalyst/electrode complex is tolerant to the ambient oxygen. We report demonstration by ab initio simulations that the complex is indeed tolerant to dissolved oxygen over timescales long enough for practical application, reducing it efficiently. This promising hydrogen-producing catalyst, composed of earth-abundant materials and with a diffusion-limited rate in acidified water, is efficient as well as oxygen tolerant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据