4.8 Article

Long-term model predictive control of gene expression at the population and single-cell levels

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1206810109

关键词

model based control; computational biology; high osmolarity glycerol pathway; quantitative systems biology

资金

  1. Agence Nationale de la Recherche [DiSiP-ANR-07-JCJC-0001, ICEBERG-ANR-10-BINF-06-01]
  2. Region Ile de France (C'Nano-ModEnv)
  3. Action d'Envergure ColAge from INRIA/INSERM (Institut Nationale de la Sante et de la Recherche Medicale)
  4. MechanoBiology Institute
  5. Laboratoire International Associe CAFS (Cell Adhesion France-Singapour)

向作者/读者索取更多资源

Gene expression plays a central role in the orchestration of cellular processes. The use of inducible promoters to change the expression level of a gene from its physiological level has significantly contributed to the understanding of the functioning of regulatory networks. However, from a quantitative point of view, their use is limited to short-term, population-scale studies to average out cell-to-cell variability and gene expression noise and limit the nonpredictable effects of internal feedback loops that may antagonize the inducer action. Here, we show that, by implementing an external feedback loop, one can tightly control the expression of a gene over many cell generations with quantitative accuracy. To reach this goal, we developed a platform for real-time, closed-loop control of gene expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics to manipulate the cells' environment, and original software for automated imaging, quantification, and model predictive control. By using an endogenous osmostress responsive promoter and playing with the osmolarity of the cells environment, we show that long-term control can, indeed, be achieved for both time-constant and time-varying target profiles at the population and even the single-cell levels. Importantly, we provide evidence that real-time control can dynamically limit the effects of gene expression stochasticity. We anticipate that our method will be useful to quantitatively probe the dynamic properties of cellular processes and drive complex, synthetically engineered networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据