4.8 Article

Enhanced top soil carbon stocks under organic farming

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1209429109

关键词

climate change; soil quality; agricultural systems

资金

  1. Mercator Foundation Switzerland
  2. Food and Agriculture Organization of the United Nations in the context of the Round Table of Organic Agriculture and Climate Change
  3. Royal Society

向作者/读者索取更多资源

It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 +/- 0.06% points (mean +/- 95% confidence interval) for SOC concentrations, 3.50 +/- 1.08 Mg C ha(-1) for stocks, and 0.45 +/- 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 +/- 1.50 Mg C ha-1), whereas the difference in sequestration rates became insignificant (0.07 +/- 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 +/- 0.09% points and 2.16 +/- 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 +/- 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据