4.8 Article

Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1104313109

关键词

biomarkers; nitrogen fixation; stable isotopes; paleoceanography

资金

  1. National Science Foundation [OCE-0825269]
  2. National Aeronautics and Space Administration Astrobiology Institute
  3. David and Lucille Packard Foundation

向作者/读者索取更多资源

The Mesozoic is marked by several widespread occurrences of intense organic matter burial. Sediments from the largest of these events, the Cenomanian-Turonian Oceanic Anoxic Event (OAE 2) are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. It has remained a challenge to describe a nitrogen cycle that could achieve such isotopic depletion. Here we use nitrogen-isotope ratios of porphyrins to show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, whereas cyanobacteria contributed on average approximately 20%. Such data require that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. Our results agree with models that suggest the OAEs were high-productivity events, supported by vigorous upwelling. Upwelling of anoxic deep waters would have supplied reduced N species (i.e., NH4+) to primary producers. We propose that new production during OAE 2 primarily was driven by direct NH4+-assimilation supplemented by diazotrophy, whereas chemocline denitrification and anammox quantitatively consumed NO3- and NO2-. A marine nitrogen reservoir dominated by NH4+, in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in N-15.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据