4.8 Article

Highly efficient and robust molecular ruthenium catalysts for water oxidation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1118347109

关键词

catalysis; density function theory; seven coordination; photosystem II; solar fuels

资金

  1. Swedish Research Council
  2. Knut and Alice Wallenberg Foundation
  3. Swedish Energy Agency
  4. China Scholarship Council (CSC)
  5. Basic Research Program of China [2009CB220009]
  6. Natural Science Foundation of China [21120102036]

向作者/读者索取更多资源

Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H-2 driven by solar radiation (H2O + h nu -> 1/2O(2) + H-2). The oxidation of water (H2O -> 1/2O(2) + 2H(+) + 2e(-)) provides protons and electrons for the production of dihydrogen (2H(+) + 2e(-) -> H-2), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L-2] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze Ce-IV-driven [Ce-IV = Ce(NH4)(2()NO3)(6)] water oxidation with high oxygen production rates up to 286 s(-1) and high turnover numbers up to 55,400.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据