4.8 Article

Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1115796109

关键词

A(1)A(o) ATPase; energy conservation; ion specificity; methanogens; energetic limit

资金

  1. Deutsche Forschungsgemeinschaft [SFB807]
  2. Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main
  3. Ministry of Higher Education, Research, and the Arts (LOEWE)
  4. Cluster of Excellence Macromolecular Complexes

向作者/读者索取更多资源

ATP synthases are the primary source of ATP in all living cells. To catalyze ATP synthesis, these membrane-associated complexes use a rotary mechanism powered by the transmembrane diffusion of ions down a concentration gradient. ATP synthases are assumed to be driven either by H+ or Na+, reflecting distinct structural motifs in their membrane domains, and distinct metabolisms of the host organisms. Here, we study the methanogenic archaeon Methanosarcina acetivorans using assays of ATP hydrolysis and ion transport in inverted membrane vesicles, and experimentally demonstrate that the rotary mechanism of its ATP synthase is coupled to the concurrent translocation of both H+ and Na+ across the membrane under physiological conditions. Using free-energy molecular simulations, we explain this unprecedented observation in terms of the ion selectivity of the binding sites in the membrane rotor, which appears to have been tuned via amino acid substitutions so that ATP synthesis in M. acetivorans can be driven by the H+ and Na+ gradients resulting from methanogenesis. We propose that this promiscuity is a molecular mechanism of adaptation to life at the thermodynamic limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据