4.8 Article

Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase e in rolling circle DNA synthesis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1203734109

关键词

-

资金

  1. National Institutes of Health [GMS R01 GM034559]

向作者/读者索取更多资源

In eukaryotes, although the Mcm2-7 complex is a key component of the replicative DNA helicase, its association with Cdc45 and GINS (the CMG complex) is required for the activation of the DNA helicase. Here, we show that the CMG complex is localized to chromatin in human cells and describe the biochemical properties of the human CMG complex purified from baculovirus-infected Sf9 cells. The isolated complex binds to ssDNA regions in the presence of magnesium and ATP (or a nonhydrolyzable ATP analog), contains maximal DNA helicase in the presence of forked DNA structures, and translocates along the leading strand (3' to 5' direction). The complex hydrolyses ATP in the absence of DNA; unwinds duplex regions up to 500 bp; and either replication protein A or Escherichia coli single stranded binding protein increases the efficiency of displacement of long duplex regions. Using a 200-nt primed circular DNA substrate, the combined action of human DNA polymerase e and the human CMG complex leads to the formation of products >10 kb in length. These findings suggest that the coordinated action of these replication complexes supports leading strand synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据