4.8 Article

Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1200636109

关键词

signal transduction; cell division

资金

  1. National Science Foundation [IOS-0846192]
  2. National Institutes of Health [F32-GM090534]
  3. Division Of Integrative Organismal Systems
  4. Direct For Biological Sciences [0846192] Funding Source: National Science Foundation

向作者/读者索取更多资源

The transcription factor WUSCHEL (WUS) acts from a well-defined domain within the Arabidopsis thaliana shoot apical meristem (SAM) to maintain a stem cell niche. A negative-feedback loop involving the CLAVATA (CLV) signaling pathway regulates the number of WUS-expressing cells and provides the current paradigm for the homeostatic maintenance of stem cell numbers. Despite the continual turnover of cells in the SAM during development, the WUS domain remains patterned at a fixed distance below the shoot apex. Recent work has uncovered a positive-feedback loop between WUS function and the plant hormone cytokinin. Furthermore, loss of function of the cytokinin biosynthetic gene, LONELY GUY (LOG), results in a wus-like phenotype in rice. Herein, we find the Arabidopsis LOG4 gene is expressed in the SAM epidermis. We use this to develop a computational model representing a growing SAM to suggest the plausibility that apically derived cytokinin and CLV signaling, together, act as positional cues for patterning the WUS domain within the stem cell niche. Furthermore, model simulations backed by experimental data suggest a previously unknown negative feedback between WUS function and cytokinin biosynthesis in the Arabidopsis SAM epidermis. These results suggest a plausible dynamic feedback principle by which the SAM stem cell niche is patterned.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据