4.8 Article

Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1201201109

关键词

thin films; stress focusing; buckling instability; elasto-capillary phenomena

资金

  1. National Science Foundation (NSF) [DMR-0907245]
  2. NSF-Materials Research Science and Engineering Center at University of Massachusetts, Amherst
  3. American Chemical Society
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [0907245] Funding Source: National Science Foundation

向作者/读者索取更多资源

Smooth wrinkles and sharply crumpled regions are familiar motifs in biological or synthetic sheets, such as rapidly growing plant leaves and crushed foils. Previous studies have addressed both morphological types, but the generic route whereby a featureless sheet develops a complex shape remains elusive. Here we show that this route proceeds through an unusual sequence of distinct symmetry-breaking instabilities. The object of our study is an ultrathin circular sheet stretched over a liquid drop. As the curvature is gradually increased, the surface tension stretching the sheet over the drop causes compression along circles of latitude. The compression is relieved first by a transition into a wrinkle pattern, and then into a crumpled state via a continuous transition. Our data provide conclusive evidence that wrinkle patterns in highly bendable sheets are not described by classical buckling methods, but rather by a theory which assumes that wrinkles completely relax the compressive stress. With this understanding we recognize the observed sequence of transitions as distinct symmetry breakings of the shape and the stress field. The axial symmetry of the shape is broken upon wrinkling but the underlying stress field preserves this symmetry. Thus, the wrinkle-to-crumple transition marks symmetry-breaking of the stress in highly bendable sheets. By contrast, other instabilities of sheets, such as blistering and cracking, break the homogeneity of shape and stress simultaneously. The onset of crumpling occurs when the wrinkle pattern grows to half the sheet's radius, suggesting a geometric, material-independent origin for this transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据