4.8 Article

Evaporation-induced cavitation in nanofluidic channels

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1014075109

关键词

nanobubbles; confined fluids; confined water; bubble dynamics; bubble formation

资金

  1. Basic Energy Sciences, Department of Energy [DE-AC02-05-CH11231]
  2. National Science Foundation (NSF) Center for Scalable and Integrated Nanomanufacturing [DMI-0327077]
  3. NSF Center of Integrated Nanomechanical Systems at University of California, Berkeley [NSF EEC-0425914]

向作者/读者索取更多资源

Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据