4.8 Article

Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1115634109

关键词

mitochondrion; oxygen sensing; evolution; sulfur metabolism; phenylephrine

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Heart and Stroke Foundation of Canada

向作者/读者索取更多资源

Although many types of ancient bacteria and archea rely on hydrogen sulfide (H2S) for their energy production, eukaryotes generate ATP in an oxygen-dependent fashion. We hypothesize that endogenous H2S remains a regulator of energy production in mammalian cells under stress conditions, which enables the body to cope with energy demand when oxygen supply is insufficient. Cystathionine gamma-lyase (CSE) is a major H2S-producing enzyme in the cardiovascular system that uses cysteine as the main substrate. Here we show that CSE is localized only in the cytosol, not in mitochondria, of vascular smooth-muscle cells (SMCs) under resting conditions, revealed by Western blot analysis and confocal microscopy of SMCs transfected with GFP-tagged CSE plasmid. After SMCs were exposed to A23187, thapsigargin, or tunicamycin, intracellular calcium level was increased, and CSE translocated from the cytosol to mitochondria. CSE was coimmunoprecipitated with translocase of the outer membrane 20 (Tom20) in mitochondrial membrane. Tom20 siRNA significantly inhibited mitochondrial translocation of CSE and mitochondrial H2S production. The cysteine level inside mitochondria is approximately three times that in the cytosol. Translocation of CSE to mitochondria metabolized cysteine, produced H2S inside mitochondria, and increased ATP production. Inhibition of CSE activity reversed A23187-stimulated mitochondrial ATP production. H2S improved mitochondrial ATP production in SMCs with hypoxia, which alone decreased ATP production. These results suggest that translocation of CSE to mitochondria on specific stress stimulations is a unique mechanism to promote H2S production inside mitochondria, which subsequently sustains mitochondrial ATP production under hypoxic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据