4.8 Article

Dynamics of inherently bounded histone modification domains

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1211172109

关键词

epigenetics; heterochromatin; methylation

资金

  1. National Institutes of Health [HD55391, NS046789]
  2. Howard Hughes Medical Institute
  3. Eunice Kennedy Shriver National Institute of Child Health and Human Development Fellowship [F32HD072627]

向作者/读者索取更多资源

A central goal of chromatin biology is to reveal how posttranslational histone marks modulate gene expression; however, relatively little is known about the spatial or temporal dynamics of these marks. We previously showed that a dynamic model of histone mark nucleation, propagation, and turnover fits the mean enrichment profiles from 99% of noncentromeric histone H3 lysine 9 trimethylation (H3K9me3) domains in mouse embryonic stem cells without the need for boundary or insulator elements. Here we report the full details of this inherently bounded model of histone modification dynamics and describe several dynamic features of the model using H3K9me3 as a paradigm. By analyzing the kinetic and structural constraints that drive formation of inherently bounded domains, we find that such domains are optimized when the rates of marking and turnover are comparable. Additionally, we find that to establish such domains, propagation of the histone marks must occur primarily through local contacts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据