4.8 Article

Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1215462109

关键词

optical tweezers; microrheology; intracellular trafficking; tug-of-war; laser trap calibration

资金

  1. National Institutes of Health [GM087253, GM089077]

向作者/读者索取更多资源

Many cellular cargoes move bidirectionally along microtubules, driven by teams of plus-and minus-end-directed motor proteins. To probe the forces exerted on cargoes during intracellular transport, we examined latex beads phagocytosed into living mammalian macrophages. These latex bead compartments (LBCs) are encased in membrane and transported along the cytoskeleton by a complement of endogenous kinesin-1, kinesin-2, and dynein motors. The size and refractive index of LBCs makes them well-suited for manipulation with an optical trap. We developed methods that provide in situ calibration of the optical trap in the complex cellular environment, taking into account any variations among cargoes and local viscoelastic properties of the cytoplasm. We found that centrally and peripherally directed forces exerted on LBCs are of similar magnitude, with maximum forces of similar to 20 pN. During force events greater than 10 pN, we often observe 8-nm steps in both directions, indicating that the stepping of multiple motors is correlated. These observations suggest bidirectional transport of LBCs is driven by opposing teams of stably bound motors that operate near force balance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据