4.8 Article

Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1119752109

关键词

brain size evolution; virtual endocast; fossil hominins; frontal cortex; obstetrics

资金

  1. Swiss National Science Foundation [31003A_135470/1]
  2. Swiss National Science Foundation (SNF) [31003A_135470] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The type specimen for Australopithecus africanus (Taung) includes a natural endocast that reproduces most of the external morphology of the right cerebral hemisphere and a fragment of fossilized face that articulates with the endocast. Despite the fact that Taung died between 3 and 4 y of age, the endocast reproduces a small triangular-shaped remnant of the anterior fontanelle, from which a clear metopic suture (MS) courses rostrally along the midline [Hrdlicka A (1925) Am J Phys Anthropol 8:379-392]. Here we describe and interpret this feature of Taung in light of comparative fossil and actualistic data on the timing of MS closure. In great apes, the MS normally fuses shortly after birth, such that unfused MS similar to Taung's are rare. In humans, however, MS fuses well after birth, and partially or unfused MS are frequent. In gracile fossil adult hominins that lived between similar to 3.0 and 1.5 million y ago, MS are also relatively frequent, indicating that the modern human-like pattern of late MS fusion may have become adaptive during early hominin evolution. Selective pressures favoring delayed fusion might have resulted from three aspects of perinatal ontogeny: (i) the difficulty of giving birth to large-headed neonates through birth canals that were reconfigured for bipedalism (the obstetric dilemma), (ii) high early postnatal brain growth rates, and (iii) reorganization and expansion of the frontal neocortex. Overall, our data indicate that hominin brain evolution occurred within a complex network of fetopelvic constraints, which required modification of frontal neurocranial ossification patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据