4.8 Article

Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1201669109

关键词

alpha-hemolysin; crown ethers; single-molecule detection; DNA damage

资金

  1. NIH [GM093099, HG005095]

向作者/读者索取更多资源

DNA abasic (AP) sites are one of the most frequent lesions in the genome and have a high mutagenic potential if unrepaired. After selective attachment of 2-aminomethyl-18-crown-6 (18c6), individual AP lesions are detected during electrophoretic translocation through the bacterial protein ion channel alpha-hemolysin (alpha-HL) embedded in a lipid bilayer. Interactions between 18c6 and Na+ produce characteristic pulse-like current amplitude signatures that allow the identification of individual AP sites in single molecules of homopolymeric or heteropolymeric DNA sequences. The bulky 18c6-cation complexes also dramatically slow the DNA motion to more easily recordable levels. Further, the behaviors of the AP-18c6 adduct are different with respect to the directionalities of DNA entering the protein channel, and they can be precisely manipulated by altering the cation (Li+, Na+ or K+) of the electrolyte. This method permits detection of multiple AP lesions per strand, which is unprecedented in other work. Additionally, insights into the thermodynamics and kinetics of 18c6-cation interactions at a single-molecule level are provided by the nanopore measurement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据