4.8 Article

Structure, function and inhibition of the two- and three-domain 4Fe-4S IspG proteins

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1121107109

关键词

drug discovery; metalloprotein; protein folding; iron-sulfur

资金

  1. United States Public Health Service (National Institutes of Health) [GM65307]

向作者/读者索取更多资源

IspG is a 4Fe4S protein involved in isoprenoid biosynthesis. Most bacterial IspGs contain two domains: a TIM barrel (A) and a 4Fe4S domain (B), but in plants and malaria parasites, there is a large insert domain (A*) whose structure and function are unknown. We show that bacterial IspGs function in solution as (AB)(2) dimers and that mutations in either both A or both B domains block activity. Chimeras harboring an A-mutation in one chain and a B-mutation in the other have 50% of the activity seen in wild-type protein, because there is still one catalytically active AB domain. However, a plant IspG functions as an AA*B monomer. We propose, using computational modeling and electron microscopy, that the A* insert domain has a TIM barrel structure that interacts with the A domain. This structural arrangement enables the A and B domains to interact in a cup and ball manner during catalysis, just as in the bacterial systems. EPR/HYSCORE spectra of reaction intermediate, product, and inhibitor ligands bound to both two and three domain proteins are identical, indicating the same local electronic structure, and computational docking indicates these ligands bridge both A and B domains. Overall, the results are of broad general interest because they indicate the insert domain in three-domain IspGs is a second TIM barrel that plays a structural role and that the pattern of inhibition of both two and three domain proteins are the same, results that can be expected to be of use in drug design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据