4.8 Article

Semimetallic dense hydrogen above 260 GPa

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1207065109

关键词

ab initio; solid hydrogen; high-pressure physics; phase transition

资金

  1. US Department of Energy Basic Energy Sciences [DE-SG0001057]
  2. Swedish Research Council (FORMAS), Vatenskapsradet, Wennergren
  3. SWECO

向作者/读者索取更多资源

Being the lightest and the most abundant element in the universe, hydrogen is fascinating to physicists. In particular, the conditions of its metallization associated with a possible superconducting state at high temperature have been a matter of much debate in the scientific community, and progress in this field is strongly correlated with the advancements in theoretical methods and experimental techniques. Recently, the existence of hydrogen in a metallic state was reported experimentally at room temperature under a pressure of 260-270 GPa, but was shortly after that disputed in the light of more experiments, finding either a semimetal or a transition to an other phase. With the aim to reconcile the different interpretations proposed, we propose by combining several computational techniques, such as density functional theory and the GW approximation, that phase III at ambient temperature of hydrogen is the Cmca-12 phase, which becomes a semimetal at 260 GPa. From phonon calculations, we demonstrate it to be dynamically stable; calculated electron-phonon coupling is rather weak and therefore this phase is not expected to be a high-temperature superconductor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据