4.8 Article

Impact of gene expression noise on organismal fitness and the efficacy of natural selection

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1100059108

关键词

flux balance analysis; metabolic network

资金

  1. US National Institutes of Health

向作者/读者索取更多资源

Gene expression noise is a universal phenomenon across all life forms. Although beneficial under certain circumstances, expression noise is generally thought to be deleterious. However, neither the magnitude of the deleterious effect nor the primary mechanism of this effect is known. Here, we model the impact of expression noise on the fitness of unicellular organisms by considering the influence of suboptimal expressions of enzymes on the rate of biomass production and the energetic cost associated with imprecise amounts of protein synthesis. Our theoretical modeling and empirical analysis of yeast data show four findings. (i) Expression noise reduces the mean fitness of a cell by at least 25%, and this reduction cannot be substantially alleviated by gene overexpression. (ii) Higher sensitivity of fitness to the expression fluctuations of essential genes than nonessential genes creates stronger selection against noise in essential genes, resulting in a decrease in their noise. (iii) Reduction of expression noise by genome doubling offers a substantial fitness advantage to diploids over haploids, even in the absence of sex. (iv) Expression noise generates fitness variation among isogenic cells, which lowers the efficacy of natural selection similar to the effect of population shrinkage. Thus, expression noise renders organisms both less adapted and less adaptable. Because expression noise is only one of many manifestations of the stochasticity in cellular molecular processes, our results suggest a much more fundamental role of molecular stochasticity in evolution than is currently appreciated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据