4.8 Article

Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1018487108

关键词

endonuclease; mitomycin C; cisplatin; DNA repair

资金

  1. Program for Promotion of Basic Research Activities for Innovative Biosciences
  2. Fujiwara Foundation of Science
  3. Uehara Memorial Foundation
  4. Naito Foundation
  5. Grants-in-Aid for Scientific Research [22310119, 22687001, 20114001, 23651046, 21390094] Funding Source: KAKEN

向作者/读者索取更多资源

Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this heterodimer recruits downstream members of the ICL repairosome, including the FAN1 nuclease. However, ICL processing has been shown to also involve MUS81-EME1 and XPF-ERCC1, nucleases known to interact with SLX4, a docking protein that also can bind another nuclease, SLX1. To investigate the role of SLX4 more closely, we disrupted the SLX4 gene in avian DT40 cells. SLX4 deficiency caused cell death associated with extensive chromosomal aberrations, including a significant fraction of isochromatid-type breaks, with sister chromatids broken at the same site. SLX4 thus appears to play an essential role in cell proliferation, probably by promoting the resolution of interchromatid homologous recombination intermediates. Because ubiquitylation plays a key role in the FA pathway, and because the N-terminal region of SLX4 contains a ubiquitin-binding zinc finger (UBZ) domain, we asked whether this domain is required for ICL processing. We found that SLX4(-/-) cells expressing UBZ-deficient SLX4 were selectively sensitive to ICL-inducing agents, and that the UBZ domain was required for interaction of SLX4 with ubiquitylated FANCD2 and for its recruitment to DNA-damage foci generated by ICL-inducing agents. Our findings thus suggest that ubiquitylated FANCD2 recruits SLX4 to DNA damage sites, where it mediates the resolution of recombination intermediates generated during the processing of ICLs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据