4.8 Article

Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1017313108

关键词

ice sheet modeling; climate change

资金

  1. Los Alamos National Laboratory
  2. Natural Environment Research Council (London) National Center for earth Observation
  3. National Aeronautics and Space Administration [NNX08AQ83G]
  4. NERC [cpom20001] Funding Source: UKRI
  5. Natural Environment Research Council [earth010006, cpom20001] Funding Source: researchfish

向作者/读者索取更多资源

We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland's three largest outlet glaciers, Jakobshavn Isbrae, Helheim Glacier, and Kanger-dlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 +/- 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 +/- 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, >75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据