4.8 Article

Atomistic simulation of ion solvation in water explains surface preference of halides

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1017903108

关键词

ozone layer; GROMACS; aerosol; thermodynamics

资金

  1. Swedish Research Council [2007-5671]
  2. European Community
  3. [SNIC 022/09-10]

向作者/读者索取更多资源

Water is a demanding partner. It strongly attracts ions, yet some halide anions-chloride, bromide, and iodide-are expelled to the air/water interface. This has important implications for chemistry in the atmosphere, including the ozone cycle. We present a quantitative analysis of the energetics of ion solvation based on molecular simulations of all stable alkali and halide ions in water droplets. The potentials of mean force for Cl-, Br-, and I-have shallow minima near the surface. We demonstrate that these minima derive from more favorable water-water interaction energy when the ions are partially desolvated. Alkali cations are on the inside because of the favorable ion-water energy, whereas F-is driven inside by entropy. Models attempting to explain the surface preference based on one or more ion properties such as polarizability or size are shown to lead to qualitative and quantitative errors, prompting a paradigm shift in chemistry away from such simplifications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据