4.8 Article

Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1100310108

关键词

biofuel crop; cellulosic ethanol; lignin modification; Panicum virgatum

资金

  1. US Department of Agriculture
  2. US Department of Energy Biomass Initiative [2009-10003-05140]
  3. BioEnergy Science Center
  4. Samuel Roberts Noble Foundation
  5. Office of Biological and Environmental Research in the US Department of Energy Office of Science
  6. US Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the intrinsic recalcitrance of biomass. We show here that genetic modification of switchgrass can produce phenotypically normal plants that have reduced thermal-chemical (<= 180 degrees C), enzymatic, and microbial recalcitrance. Down-regulation of the switchgrass caffeic acid O-methyltransferase gene decreases lignin content modestly, reduces the syringyl: guaiacyl lignin monomer ratio, improves forage quality, and, most importantly, increases the ethanol yield by up to 38% using conventional biomass fermentation processes. The down-regulated lines require less severe pretreatment and 300-400% lower cellulase dosages for equivalent product yields using simultaneous saccharification and fermentation with yeast. Furthermore, fermentation of diluted acid-pretreated transgenic switchgrass using Clostridium thermocellum with no added enzymes showed better product yields than obtained with unmodified switchgrass. Therefore, this apparent reduction in the recalcitrance of transgenic switchgrass has the potential to lower processing costs for biomass fermentation-derived fuels and chemicals significantly. Alternatively, such modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据