4.8 Article

Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1017542108

关键词

adaptive acclimation; ecological genomics; microarray

资金

  1. National Science Foundation [EF-0723771, BES-0652006]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [1048208] Funding Source: National Science Foundation

向作者/读者索取更多资源

Adaptive variation tends to emerge clinally along environmental gradients or discretely among habitats with limited connectivity. However, in Atlantic killifish (Fundulus heteroclitus), a population genetic discontinuity appears in the absence of obvious barriers to gene flow along parallel salinity clines and coincides with a physiologically stressful salinity. We show that populations resident on either side of this discontinuity differ in their abilities to compensate for osmotic shock and illustrate the physiological and functional genomic basis of population variation in hypoosmotic tolerance. A population native to a freshwater habitat, upstream of the genetic discontinuity, exhibits tolerance to extreme hypoosmotic challenge, whereas populations native to brackish or marine habitats downstream of the discontinuity lose osmotic homeostasis more severely and take longer to recover. Comparative transcriptomics reveals a core transcriptional response associated with acute and acclimatory responses to hypoosmotic shock and posits unique mechanisms that enable extreme osmotic tolerance. Of the genes that vary in expression among populations, those that are putatively involved in physiological acclimation are more likely to exhibit nonneutral patterns of divergence between freshwater and brackish populations. It is not the well-known effectors of osmotic acclimation, but rather the lesser-known immediate-early responses, that appear important in contributing to population differences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据