4.8 Article

Protein self-diffusion in crowded solutions

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1107287108

关键词

macromolecular crowding; quasi-elastic neutron scattering; globular proteins

资金

  1. ILL

向作者/读者索取更多资源

Macromolecular crowding in biological media is an essential factor for cellular function. The interplay of intermolecular interactions at multiple time and length scales governs a fine-tuned system of reaction and transport processes, including particularly protein diffusion as a limiting or driving factor. Using quasielastic neutron backscattering, we probe the protein self-diffusion in crowded aqueous solutions of bovine serum albumin on nanosecond time and nanometer length scales employing the same protein as crowding agent. The measured diffusion coefficient D(phi) strongly decreases with increasing protein volume fraction phi explored within 7% <= phi <= 30%. With an ellipsoidal protein model and an analytical framework involving colloid diffusion theory, we separate the rotational D-r(phi) and translational D-t(phi) contributions to D(phi). The resulting D-t(phi) is described by short-time self-diffusion of effective spheres. Protein self-diffusion at biological volume fractions is found to be slowed down to 20% of the dilute limit solely due to hydrodynamic interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据