4.8 Article

Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1112816108

关键词

disulfide bond; biomass; primary cell wall; secondary cell wall

资金

  1. National Research Initiative, Cooperative State Research, Education, and Extension Service, US Department of Agriculture (USDA) [2003-35318-15377, 2006-35318-17301]
  2. USDA Agriculture and Food Research Initiative [2010-65115-20396]
  3. US Department of Energy (DOE) [DE-AC02-05CH11231]
  4. Danish Agency for Science, Technology and Innovation
  5. Villum Kann Rasmussen Foundation, DOE Center [DE-FG02-09ER20097]
  6. BioEnergy Science Center [DE-PS02-06ER64304]
  7. Office of Biological and Environmental Research in the DOE Office of Science
  8. NIFA [2010-65115-20396, 581216] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Plant cell wall pectic polysaccharides are arguably the most complex carbohydrates in nature. Progress in understanding pectin synthesis has been slow due to its complex structure and difficulties in purifying and expressing the low-abundance, Golgi membranebound pectin biosynthetic enzymes. Arabidopsis galacturonosyltransferase (GAUT) 1 is an alpha-1,4-galacturonosyltransferase (GalAT) that synthesizes homogalacturonan (HG), the most abundant pectic polysaccharide. We now show that GAUT1 functions in a protein complex with the homologous GAUT7. Surprisingly, although both GAUT1 and GAUT7 are type II membrane proteins with single Nterminal transmembrane-spanning domains, the N-terminal region of GAUT1, including the transmembrane domain, is cleaved in vivo. This raises the question of how the processed GAUT1 is retained in the Golgi, the site of HG biosynthesis. We show that the anchoring of GAUT1 in the Golgi requires association with GAUT7 to form the GAUT1: GAUT7 complex. Proteomics analyses also identified 12 additional proteins that immunoprecipitate with the GAUT1: GAUT7 complex. This study provides conclusive evidence that the GAUT1: GAUT7 complex is the catalytic core of an HG: GalAT complex and that cell wall matrix polysaccharide biosynthesis occurs via protein complexes. The processing of GAUT1 to remove its N-terminal transmembrane domain and its anchoring in the Golgi by association with GAUT7 provides an example of how specific catalytic domains of plant cell wall biosynthetic glycosyltransferases could be assembled into protein complexes to enable the synthesis of the complex and developmentally and environmentally plastic plant cell wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据