4.8 Article

DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1102100108

关键词

gyrase dynamics; nucleotide-induced conformational changes; topoisomerase mechanism; DNA wrapping; negative supercoiling

资金

  1. VolkswagenStiftung
  2. Swiss National Science Foundation
  3. National Center of Competence in Research (NCCR) Nanoscale Sciences

向作者/读者索取更多资源

DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three protein interfaces in gyrase, the N-gate, DNA-gate, and C-gate. We show here that DNA binding to the DNA-gate of gyrase and wrapping of DNA around the C-terminal domains of GyrA induces a narrowing of the N-gate. This half-closed state prepares capture of a T-segment in the upper cavity of gyrase. Subsequent N-gate closure upon binding of ATP then poises the reaction toward strand passage. The N-gate reopens after ATP hydrolysis, allowing for further catalytic cycles. DNA binding, cleavage, and wrapping and N-gate narrowing are intimately linked events that coordinate conformational changes at the DNA and the N-gate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据