4.8 Article

Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-κB

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1017640108

关键词

angiotensin receptor; Ca2+ signaling; calcineurin; signaling complex; posttranslational modification

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Naito Foundation
  3. Mochida Memorial Foundation
  4. Grants-in-Aid for Scientific Research [20117013, 23659042, 23229008, 22590083, 22689003, 22136008] Funding Source: KAKEN

向作者/读者索取更多资源

Cross-talk between G protein-coupled receptor (GPCR) signaling pathways serves to fine tune cellular responsiveness by neurohumoral factors. Accumulating evidence has implicated nitric oxide (NO)-based signaling downstream of GPCRs, but the molecular details are unknown. Here, we show that adenosine triphosphate (ATP) decreases angiotensin type 1 receptor (AT(1)R) density through NO-mediated S-nitrosylation of nuclear factor kappa B (NF-kappa B) in rat cardiac fibroblasts. Stimulation of purinergic P2Y(2) receptor by ATP increased expression of inducible NO synthase (iNOS) through activation of nuclear factor of activated T cells, NFATc1 and NFATc3. The ATP-induced iNOS interacted with p65 subunit of NF-kappa B in the cytosol through flavin-binding domain, which was indispensable for the locally generated NO-mediated S-nitrosylation of p65 at Cys38. beta-Arrestins anchored the formation of p65/I kappa B alpha/beta-arrestins/iNOS quaternary complex. The S-nitrosylated p65 resulted in decreases in NF-kappa B transcriptional activity and AT(1)R density. In pressure-overloaded mouse hearts, ATP released from cardiomyocytes led to decrease in AT(1)R density through iNOS-mediated S-nitrosylation of p65. These results show a unique regulatory mechanism of heterologous regulation of GPCRs in which cysteine modification of transcriptional factor rather than protein phosphorylation plays essential roles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据