4.8 Article

Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1013715108

关键词

chemotherapy; DNA repair; synthetic lethality; double-strand break repair

资金

  1. National Institutes of Health [P50 CA136393, T32 GM072474]

向作者/读者索取更多资源

Poly(ADP-ribose) polymerase (PARP) inhibitors are strikingly toxic to cells with defects in homologous recombination (HR). The mechanistic basis for these findings is incompletely understood. Here, we show that PARP inhibitor treatment induces phosphorylation of DNA-dependent protein kinase substrates and stimulates error-prone nonhomologous end joining (NHEJ) selectively in HR-deficient cells. Notably, inhibiting DNA-dependent protein kinase activity reverses the genomic instability previously reported in these cells after PARP inhibition. Moreover, disabling NHEJ by using genetic or pharmacologic approaches rescues the lethality of PARP inhibition or down-regulation in cell lines lacking BRCA2, BRCA1, or ATM. Collectively, our results not only implicate PARP1 catalytic activity in the regulation of NHEJ in HR-deficient cells, but also indicate that deregulated NHEJ plays a major role in generating the genomic instability and cytotoxicity in HR-deficient cells treated with PARP inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据