4.8 Article

Prototypical model for tensional wrinkling in thin sheets

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1108553108

关键词

pattern formation; thin-film buckling

资金

  1. American Chemical Society
  2. National Science Foundation-Materials Research Science and Engineering Center at University of Massachusetts
  3. King Abdullah University of Science and Technology [KUK-C1-013-04]
  4. Centre National de la Recherche Scientifique-Conicyt
  5. Fondecyt [1095112]
  6. Division Of Materials Research
  7. Direct For Mathematical & Physical Scien [820506] Funding Source: National Science Foundation

向作者/读者索取更多资源

The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length-a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lame, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据