4.8 Article

Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1104189108

关键词

-

资金

  1. German Federal Ministry of Education and Research

向作者/读者索取更多资源

Despite recent advances in uncovering the neural signature of tactile working memory processing in animals and humans, the representation of internally modified somatosensory working memory content has not been studied so far. Here, recording EEG in human participants (n = 25) performing a modified delayed match-to-sample task allowed us to disambiguate internally driven memory processing from encoding-related delay activity. After presentation of two distinct vibrotactile frequencies to different index fingers, a visual cue indicated which of the two previous stimuli had to be maintained in working memory throughout a retention interval for subsequent frequency discrimination against a probe stimulus. During cued stimulus maintenance, a activity (8-13 Hz) over early somatosensory cortices was lateralized according to the cued tactile stimulus, even though the location of the stimuli was task irrelevant. The task-relevant memory content, in contrast, was found to be represented in right prefrontal cortex. The key finding was that the visually presented instructions triggered systematic modulations of prefrontal beta-band activity (20-25 Hz), which selectively reflected the to-be-maintained frequency of the cued tactile vibration. The results expand previous evidence for parametric representations of vibrotactile frequency in the prefrontal cortex and corroborate a central role of dynamic beta-band synchronization during active processing of an analog stimulus quantity in human working memory. In particular, our findings suggest that such processing supports not only sustained maintenance but also purposeful modification and updating of the task-relevant working memory contents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据