4.8 Article

Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1106335108

关键词

electrohydrogenesis; microbial electrolysis cell; microbial fuel cell; renewable energy; sustainable energy

资金

  1. King Abdullah University of Science and Technology (KAUST) [KUS-I1-003-13]

向作者/读者索取更多资源

There is a tremendous source of entropic energy available from the salinity difference between river water and seawater, but this energy has yet to be efficiently captured and stored. Here we demonstrate that H-2 can be produced in a single process by capturing the salinity driven energy along with organic matter degradation using exoelectrogenic bacteria. Only five pairs of seawater and river water cells were sandwiched between an anode, containing exoelectrogenic bacteria, and a cathode, forming a microbial reverse-electrodialysis electrolysis cell. Exoelectrogens added an electrical potential from acetate oxidation and reduced the anode overpotential, while the reverse electrodialysis stack contributed 0.5-0.6 V at a salinity ratio (seawater: river water) of 50. The H-2 production rate increased from 0.8 to 1.6 m(3)-H-2/m(3)-anolyte/day for seawater and river water flow rates ranging from 0.1 to 0.8 mL/min. H-2 recovery, the ratio of electrons used for H-2 evolution to electrons released by substrate oxidation, ranged from 72% to 86%. Energy efficiencies, calculated from changes in salinities and the loss of organic matter, were 58% to 64%. By using a relatively small reverse electrodialysis stack (11 membranes), only similar to 1% of the produced energy was needed for pumping water. Although Pt was used on the cathode in these tests, additional tests with a nonprecious metal catalyst (MoS2) demonstrated H-2 production at a rate of 0.8 m(3)/m(3)/d and an energy efficiency of 51%. These results show that pure H-2 gas can efficiently be produced from virtually limitless supplies of seawater and river water, and biodegradable organic matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据