4.8 Article

Spatial control of cell fate using synthetic surfaces to potentiate TGF-β signaling

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1101454108

关键词

multivalency; signal transduction; growth factor; phage display; extracellular matrix

资金

  1. University of Wisconsin, Materials Research Science and Engineering Center [DMR-0520527]
  2. National Institute of Allergy and Infectious Diseases [AI055258]
  3. W. M. Keck Foundation

向作者/读者索取更多资源

In organisms, cell-fate decisions result from external cues presented by the extracellular microenvironment or the niche. In principle, synthetic niches can be engineered to give rise to patterned cell signaling, an advance that would transform the fields of tissue engineering and regenerative medicine. Biomaterials that display adhesive motifs are critical steps in this direction, but promoting localized signaling remains a major obstacle. We sought to exert precise spatial control over activation of TGF-beta signaling. TGF-beta signaling, which plays fundamental roles in development, tissue homeostasis, and cancer, is initiated by receptor oligomerization. We therefore hypothesized that preorganizing the transmembrane receptors would potentiate local TGF-beta signaling. To generate surfaces that would nucleate the signaling complex, we employed defined self-assembled monolayers that present peptide ligands to TGF-beta receptors. These displays of nondiffusible ligands do not compete with the growth factor but rather sensitize bound cells to subpicomolar concentrations of endogenous TGF-beta. Cells adhering to the surfaces undergo TGF-beta-mediated growth arrest and the epithelial to mesenchymal transition. Gene expression profiles reveal that the surfaces selectively regulate TGF-beta responsive genes. This strategy provides access to tailored surfaces that can deliver signals with spatial control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据