4.8 Article

p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1100023108

关键词

cell cycle; spindle checkpoint

资金

  1. Israel Science Foundation
  2. Guilford Glazer Distinguished Chair of the Israel Cancer Research Fund

向作者/读者索取更多资源

Accurate segregation of chromosomes in mitosis is ensured by a surveillance mechanism called the mitotic (or spindle assembly) checkpoint. It prevents sister chromatid separation until all chromosomes are correctly attached to the mitotic spindle through their kinetochores. The checkpoint acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets for degradation securin, an inhibitor of anaphase initiation. The activity of APC/C is inhibited by a mitotic checkpoint complex (MCC), composed of the APC/C activator Cdc20 bound to the checkpoint proteins MAD2, BubR1, and Bub3. When all kinetochores acquire bipolar attachment the checkpoint is inactivated, but the mechanisms of checkpoint inactivation are not understood. We have previously observed that hydrolyzable ATP is required for exit from checkpoint-arrested state. In this investigation we examined the possibility that ATP hydrolysis in exit from checkpoint is linked to the action of the Mad2-binding protein p31(comet) in this process. It is known that p31(comet) prevents the formation of a Mad2 dimer that it thought to be important for turning on the mitotic checkpoint. This explains how p31comet blocks the activation of the checkpoint but not how it promotes its inactivation. Using extracts from checkpoint-arrested cells and MCC isolated from such extracts, we now show that p31(comet) causes the disassembly of MCC and that this process requires beta,gamma-hydrolyzable ATP. Although p31(comet) binds to Mad2, it promotes the dissociation of Cdc20 from BubR1 in MCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据