4.8 Article

Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1101841108

关键词

diabetes; fatty acid synthase; CD36; knockout mouse

资金

  1. Japan Society for the Promotion of Science
  2. Global Centers of Excellence (COE) Program
  3. Kanae Foundation for the Promotion of Medical Science
  4. Astellas Foundation for Research on Metabolic Disorders
  5. Ono Medical Research Foundation
  6. Grants-in-Aid for Scientific Research [11J04681] Funding Source: KAKEN

向作者/读者索取更多资源

Infiltration of inflammatory macrophages into adipose tissues with the progression of obesity triggers insulin resistance and obesity-related metabolic diseases. We recently reported that macrophage-derived apoptosis inhibitor of macrophage (AIM) protein is increased in blood in line with obesity progression and is incorporated into adipocytes, thereby inducing lipolysis in adipose tissue. Here we show that such a response is required for the recruitment of adipose tissue macrophages. In vitro, AIM-dependent lipolysis induced an efflux of palmitic and stearic acids from 3T3-L1 adipocytes, thereby stimulating chemokine production in adipocytes via activation of toll-like receptor 4 (TLR4). In vivo administration of recombinant AIM to TLR4-deficient (TLR4(-/-)) mice resulted in induction of lipolysis without chemokine production in adipose tissues. Consistently, mRNA levels for the chemokines that affect macrophages were far lower in AIM-deficient (AIM(-/-)) than in wild-type (AIM(+/+)) obese adipose tissue. This reduction in chemokine production resulted in a marked prevention of inflammatory macrophage infiltration into adipose tissue in obese AIM(-/-) mice, although these mice showed more advanced obesity than AIM(+/+) mice on a high-fat diet. Diminished macrophage infiltration resulted in decreased inflammation locally and systemically in obese AIM(-/-) mice, thereby protecting them from insulin resistance and glucose intolerance. These results indicate that the increase in blood AIM is a critical event for the initiation of macrophage recruitment into adipose tissue, which is followed by insulin resistance. Thus, AIM suppression might be therapeutically applicable for the prevention of obesity-related metabolic disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据