4.8 Article

Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1115283108

关键词

receptor signaling; S locus receptor kinase

资金

  1. National Science Foundation [IOS-0744579]
  2. Direct For Biological Sciences
  3. Division Of Integrative Organismal Systems [1146725] Funding Source: National Science Foundation
  4. Division Of Integrative Organismal Sys
  5. Direct For Biological Sciences [0744579] Funding Source: National Science Foundation

向作者/读者索取更多资源

The self-incompatibility (SI) system of the Brassicaceae is based on allele-specific interactions among haplotypes of the S locus. In all tested self-incompatible Brassicaceae, the S haplotype encompasses two linked genes, one encoding the S-locus receptor kinase (SRK), a transmembrane kinase displayed at the surface of stigma epidermal cells, and the other encoding its ligand, the S-locus cysteine-rich (SCR) protein, which is localized in the pollen coat. Transfer of the two genes to self-fertile Arabidopsis thaliana allowed the establishment of robust SI in several accessions, indicating that the signaling cascade triggered by this receptor-ligand interaction and the resulting inhibition of self pollen by the stigma have been maintained in extant A. thaliana. Based on studies in Brassica species, the membrane-tethered kinase MLPK, the ARM repeat-containing U-box protein ARC1, and the exocyst subunit Exo70A1 have been proposed to function as components of an SI signaling cascade. Here we tested the role of these molecules in the SI response of A. thaliana SRK-SCR plants. We show that the A. thaliana ARC1 ortholog is a highly decayed pseudogene. We also show that, unlike reports in Brassica, inactivation of the MLPK ortholog AtAPK1b and overexpression of Exo70A1 neither abolish nor weaken SI in A. thaliana SRK-SCR plants. These results do not support a role for these molecules in the SI response of A. thaliana.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据