4.8 Article

Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1106284108

关键词

-

资金

  1. National Institutes of Health [GM31082, GM32833]

向作者/读者索取更多资源

The circadian clock in mammalian organisms is generated by a transcription-translation feedback loop that controls many biochemical pathways at the cellular level and physiology and behavior at the organismal level. Cryptochrome (Cry) is a key protein in the negative arm of the transcription-translation feedback loop. It has been found that Cry mutation in cells with p53-null genotype increased their sensitivity to apoptosis by genotoxic agents. Here we show that this increased sensitivity is due to up-regulation of the p53 gene family member p73 in response to DNA damage. As a consequence, when tumors arising fromoncogenic Ras-transformed p53(-/-) and p53(-/-)Cry1(-/-)Cry2(-/-) cells are treated with the anticancer drug oxaliplatin, p53(-/-) tumors continue to grow whereas p53(-/-)Cry1(-/-)Cry2(-/-) tumors exhibit extensive apoptosis and stop growing. This finding provides a mechanistic foundation for overcoming the resistance of p53-deficient tumor cells to apoptosis induced by DNA-damaging agents and suggests that disruption of cryptochrome function may increase the sensitivity of tumors with p53 mutation to chemotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据