4.8 Article

Mechanical tugging force regulates the size of cell-cell junctions

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0914547107

关键词

adherens junction; mechanotransduction; myosin; PDMS; traction force

资金

  1. National Institutes of Health [EB00262, EB08396, GM74048, HL73305, HL90747]
  2. Material Research Science and Engineering Center
  3. University of Pennsylvania
  4. Whitaker Foundation
  5. Ruth L. Kirschstein National Research Service Awards
  6. Div Of Civil, Mechanical, & Manufact Inn
  7. Directorate For Engineering [0846780] Funding Source: National Science Foundation

向作者/读者索取更多资源

Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell-matrix and cell-cell contact. While increased mechanical loading at cell-matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell-cell adhesions remains an open question. To investigate the responsiveness of adherens junctions (AJ) to force, we adapted a system of microfabricated force sensors to quantitatively report cell-cell tugging force and AJ size. We observed that AJ size was modulated by endothelial cell-cell tugging forces: AJs and tugging force grew or decayed with myosin activation or inhibition, respectively. Myosin-dependent regulation of AJs operated in concert with a Rac1, and this coordinated regulation was illustrated by showing that the effects of vascular permeability agents (S1P, thrombin) on junctional stability were reversed by changing the extent to which these agents coupled to the Rac and myosin-dependent pathways. Furthermore, direct application of mechanical tugging force, rather than myosin activity per se, was sufficient to trigger AJ growth. These findings demonstrate that the dynamic coordination of mechanical forces and cell-cell adhesive interactions likely is critical to the maintenance of multicellular integrity and highlight the need for new approaches to study tugging forces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据