4.8 Article

Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0909080107

关键词

-

资金

  1. National Science Foundation (NSF) [MCB-9982622]
  2. National Institutes of Health [AI066054]
  3. Cornell research funds
  4. National Sciences and Engineering Research Council
  5. NSF/Department of Energy/US Department of Agriculture
  6. Willets Fund

向作者/读者索取更多资源

Synaptotagmins are calcium sensors that regulate synaptic vesicle exo/endocytosis. Thought to be exclusive to animals, they have recently been characterized in plants. We show that Arabidopsis synaptotagmin SYTA regulates endosome recycling and movement protein (MP)-mediated trafficking of plant virus genomes through plasmodesmata. SYTA localizes to endosomes in plant cells and directly binds the distinct Cabbage leaf curl virus (CaLCuV) and Tobacco mosaic virus (TMV) cell-to-cell movement proteins. In a SYTA knockdown line, CaLCuV systemic infection is delayed, and cell-to-cell spread of TMV and CaLCuV movement proteins is inhibited. A dominant-negative SYTA mutant causes depletion of plasma membrane-derived endosomes, produces large intracellular vesicles attached to plasma membrane, and inhibits cell-to-cell trafficking of TMV and CaLCuV movement proteins, when tested in an Agrobacterium-based leaf expression assay. Our studies show that SYTA regulates endocytosis, and suggest that distinct virus movement proteins transport their cargos to plasmodesmata for cell-to-cell spread via an endocytic recycling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据